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Abstract. We discuss some aspects of cohomological properties of a two-dimensional free
Abelian gauge theory in the framework of the BRST formalism. We derive the conserved and
nilpotent BRST and co-BRST charges and express the Hodge decomposition theorem in terms of
these charges and a conserved bosonic charge corresponding to the Laplacian operator. It is because
of the topological nature of freeU(1) gauge theory that the Laplacian operator goes to zero when
equations of motion are exploited. We derive two sets of topological invariants which are related
to each other by a certain kind of duality transformation and express the Lagrangian density of this
theory as the sum of terms that are BRST and co-BRST invariants. Mathematically, this theory
captures together some of the key features of Witten- and Schwarz-type topological field theories.

1. Introduction

One of the key theorems in the mathematical aspects of cohomology is the celebrated
Hodge decomposition theorem defined on a compact manifold. This theorem states that
any arbitraryp-form fp on this manifold can be decomposed into a harmonic formωp
(1ωp = 0, dωp = 0, δωp = 0), an exact form dgp−1 and a co-exact formδhp+1:

fp = ωp + dgp−1 + δhp+1 (1.1)

whereδ(= ±∗d∗) is the Hodge dual of d (with d2 = 0, δ2 = 0) and Laplacian1 is defined
as1 = (d + δ)2 = dδ + δd [1–4]. So far, the analogue of d has been found as the local,
conserved and nilpotent (Q2

B = 0) Becchi–Rouet–Stora–Tyutin (BRST) chargeQB , which
generates a nilpotent BRST symmetry for a locally gauge-invariant Lagrangian density in any
arbitrary dimension of spacetime. The physical state conditionQB |phys〉 = 0 leads to the
annihilation of physical states in the quantum Hilbert space by the first-class constraints of the
original gauge theory. This requirement is essential for the consistent quantization of a theory
endowed with the first-class constraints (see, e.g., [5–10])†. It will be an interesting idea to
explore the possibility of finding thelocal conserved charges corresponding toδ and1 so
that a complete physical understanding of BRST cohomology and Hodge decomposition can
emerge in the quantum Hilbert space of states.

The purpose of this paper is to provide some physical interpretations to the analogues
of δ and1 in the language of nilpotent (forδ), local, covariant and continuous symmetry
properties of a freeU(1) gauge theory described by the BRST invariant Lagrangian densities

† Attempts have also been made to discuss the second-class constraints in the framework of the BRST formalism
(see, e.g., [11, 12] and references therein).
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and show that this theory is a tractable field-theoretical model for the Hodge theory in two(1+1)
dimensions of spacetime. Some very interesting and illuminating attempts [13–16] have been
made towards this goal for the Abelian as well as non-Abelian gauge theories in any arbitrary
dimension of spacetime. However, the symmetry transformations turn out to be non-local
and non-covariant. In the relativistic covariant formulation, the symmetry transformations
turn out to be even non-nilpotent and they become nilpotent only when some restrictions are
imposed [17]. We shall demonstrate that for the two-dimensional (2D) BRST invariant free
U(1) gauge theory, a conserved and nilpotent co(dual)-BRST chargeQD (i.e. the analogue
of δ) can be defined which corresponds to a new local, covariant, continuous and nilpotent
symmetry transformation under which the gauge-fixing termδA = (∂ ·A)† remains invariant.
This should be compared and contrasted with the usual BRST transformation under which
the 2-formF = dA remains invariant in theU(1) gauge theory. Further, we show that the
anticommutator of both these chargesW = {QB,QD} is the analogue of the Laplacian operator
1 and it turns out to be the Casimir operator for the extended BRST algebra. We implement
the Hodge decomposition theorem with these charges and show that the requirement of the
annihilation of physical (harmonic) states byQB andQD is sufficient to gauge away both
the degrees of freedom of a single photon in two dimensions. The ensuing theory becomes
topological in nature (as there are no propagating degrees of freedom left in the theory) [18]. In
the framework of BRST cohomology and Hodge decomposition theorem, this fact is encoded
in rendering the Casimir operatorW to go to zero (W → 0) when equations of motion are
exploited and all the fields are assumed to fall off rapidly atx →±∞. In contrast, for the 2D
interactingU(1) gauge theory, it has been shown thatW does not go to zero on-shell because of
the presence of matter degrees of freedom in the theory [19]. For the topological 2D freeU(1)
gauge theory, we derive two sets of topological invariants with respect to both the conserved
and nilpotent chargesQB andQD. These invariants turn out to be connected with each other
by a certain specific type of duality transformation.

The outline of our paper is as follows. In section 2, we set up the notation and sketch briefly
the essentials of BRST formalism forU(1) gauge theory in any arbitrary spacetime dimension.
Section 3 is devoted to the derivation of the nilpotent and conserved (anti)dual-BRST charge
and the Laplacian operator in two dimensions of spacetime. This is followed, in section 4, by
the discussion of an extended BRST algebra which is constituted by six conserved charges.
We discuss Hodge decomposition theorem and obtain two sets of topological invariants in
section 5. Finally, we make some concluding remarks in section 6.

2. Preliminary: BRST invariant Lagrangians

We begin with the BRST invariant Lagrangian density (Lb) for theU(1) gauge theory in the
Feynman gauge (see, e.g., [5–9])

Lb = − 1
4F

µνFµν − 1
2(∂ · A)2 − i∂µC̄ ∂

µC (2.1)

where the first term is the classical Maxwell Lagrangian density and the second and third
terms are the gauge-fixing and Faddeev–Popov ghost terms, respectively. Here theU(1)
gauge connectionAµ is defined through the 1-formA = Aµ dxµ and the curvature term
Fµν = ∂µAν − ∂νAµ (µ, ν = 0, 1, 2, . . . D − 1) is obtained from the 2-formF = dA in
anyD-dimensional flat Minkowski spacetime. Furthermore, the gauge-fixing term(∂ · A) =
† Here the 1-formA = Aµ dxµ defines the vector potentialAµ of theU(1) gauge theory. Furthermore, it can be
easily seen that the gauge-fixing term(∂ · A) = δA is the Hodge dual of the 2-formF = dA in the AbelianU(1)
gauge theory in any arbitrary dimension of spacetime (see, e.g., [2]).
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∂µA
µ ≡ δA, is the Hodge dual of the 2-formF = dA andC̄(C) are the anti(ghost) fields. The

following on-shell (�C = 0) nilpotent(δ2
b = 0) symmetry transformations

δbAµ = η∂µC δbC = 0 δbFµν = 0

δbC̄ = −iη(∂ · A) δb(∂ · A) = η�C
(2.2)

lead to the derivation of a conserved and on-shell nilpotent BRST chargeQb

Qb =
∫

dD−1x
[
∂0(∂ · A)C − (∂ · A)∂0C

]
(2.3)

whereη is an anticommuting (ηC = −Cη, ηC̄ = −C̄η) spacetime-independent infinitesimal
parameter. Introduction of an auxiliary fieldB in the Lagrangian density (2.1)

LB = − 1
4F

µνFµν +B(∂ · A) + 1
2B

2 − i∂µC̄ ∂
µC (2.4)

enables the validity of the off-shell nilpotent(δ2
B = 0) symmetry transformations

δBAµ = η∂µC δBFµν = 0 δBC = 0

δBC̄ = iηB δBB = 0 δB(∂ · A) = η�C
(2.5)

which lead to the existence of an off-shell nilpotent and conserved BRST charge

QB =
∫

d(D−1)x
[
BĊ − ḂC]. (2.6)

The invariance of the ghost actionIFP = −i
∫

dDx ∂µC̄ ∂µC under discrete symmetry
transformations:C → ±iC̄, C̄ → ±iC implies the existence of a conserved and nilpotent
anti-BRST charge(QAB) which can be derived from the expressions (2.3) and (2.6) by the
substitutionC → ±iC̄. The continuous global symmetry invariance of the total action
under the transformationsC → e−λC, C̄ → eλC̄, Aµ → Aµ,B → B (whereλ is a global
parameter), leads to the derivation of the conserved ghost charge(Qg),

Qg = −i
∫

d(D−1)x
[
C ˙̄C + C̄Ċ

]
. (2.7)

Together, these conserved charges obey the following algebra:

Q2
B = 1

2{QB,QB} = 0 Q2
AB = 1

2 {QAB,QAB} = 0

{QB,QAB} = QBQAB +QABQB = 0

i[Qg,QB ] = +QB i[Qg,QAB ] = −QAB

(2.8)

where the canonical (anti)commutators for the BRST invariant Lagrangians are exploited for
the derivation of the above algebra. This algebra is valid forU(1) gauge theory in any arbitrary
dimension of spacetime. It will be noticed that the anticommutator{QB,QAB} = 0 implies
that the combined transformationsδBδAB+δABδB acting on any field produce no transformation
at all. Thus, anti-BRST charge is not the analogue of the dual (adjoint) exterior derivative(δ)

for theU(1) gauge theory†.

† It has been demonstrated in [20] that the anticommutator of the cohomologically higher-order BRST and anti-BRST
charges is not zero and it leads to the definition of a cohomologically higher-order Laplacian operator for the compact
non-Abelian Lie algebras.
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3. Dual-BRST symmetry in two dimensions

In addition to the symmetries:C → ±iC̄, C̄ → ±iC, the ghost action−i
∫

d2x ∂µC̄ ∂
µC in

2D respects another symmetry; namely†,

∂µ→±iεµν∂
ν εµνε

µλ = −δλν . (3.1)

It turns out that the total 2D Lagrangian density (2.1)

Lb = 1
2E

2 − 1
2(∂ · A)2 − i∂µC̄ ∂

µC (3.2)

remains invariant under the combination of the above two transformations because the ghost
term remains invariant on its own and the kinetic energy term and gauge-fixing term exchange
with each other:

1
2E

2 = 1
2(∂0A1− ∂1A0)

2 
 − 1
2(∂ · A)2 = 1

2(∂0A0 − ∂1A1)
2. (3.3)

Thus, in addition to the gauge BRST symmetry (2.2), we have an on-shell (�C̄ = 0) nilpotent
(δ2
d = 0) dual-BRST symmetryδd for the Lagrangian density (3.2)

δdAµ = −ηεµν∂νC̄ δdC = −iηE

δdE = η�C̄ δdC̄ = 0 δd(∂ · A) = 0
(3.4)

which can be derived from (2.2) by the substitutions:C → +iC̄, ∂µ→ +iεµν∂ν‡. We christen
this symmetry as dual BRST because, in contrast toδB transformations where the electric field
E is invariant, in the case ofδD, it is the gauge-fixing term(∂ · A) that remains invariant§.
Thus, we shall call the duality transformations for the Lagrangian density (3.2) those where
C → ±iC̄, C̄ → ±iC, ∂µ → ±iεµν∂ν . Introducing an auxiliary fieldB, the analogue of the
Lagrangian density (2.4) can be written as

LB = BE − 1
2B

2 +B(∂ · A) + 1
2B

2 − i∂µC̄ ∂
µC (3.5)

which respects the following off-shell nilpotent (δ2
D = 0) dual-BRST symmetry:

δDAµ = −ηεµν∂νC̄ δDC̄ = 0 δDC = −iηB δDB = 0

δDE = η�C̄ δD(∂ · A) = 0 δDB = 0.
(3.6)

This off-shell nilpotent dual-BRST transformations can be obtained from the transformations
(2.5) (with the inclusion ofδBB = 0) by the substitution:C → +iC̄, ∂µ → +iεµν∂ν, B →
−iB,B → −iB. It can be checked that the off-shell nilpotent BRST and dual-BRST
transformations (2.5) and (3.6) are connected with each other by

C → iC̄ E→ i(∂ · A) B →−iB
C̄ → iC (∂ · A)→ iE B→−iB

(3.7)

which is a manifestation of the fact that the Lagrangian density (3.5) goes to itself under
the above substitutions. Thus, for the Lagrangian density (3.5), the duality transformations
areC → ±iC̄, C̄ → ±iC, ∂µ → ±iεµν∂ν, B → ∓iB,B → ∓iB‖. These continuous

† We adopt here the notation in which the 2D flat Minkowski metric isηµν = diag(+1,−1) and� = ηµν∂µ∂ν =
∂0∂0 − ∂1∂1, ḟ = ∂0f, F01 = ∂0A1 − ∂1A0 = E = F 10, ε01 = ε10 = +1, (∂ · A) = ∂0A0 − ∂1A1.
‡ Here and in what follows, we shall take only the (+) sign in the transformations:C → ±iC̄, C̄ → ±iC, ∂µ →
±iεµν∂ν . However, analogous statements will be valid if we take a (−) sign.
§ As per our definition in the introduction, the gauge-fixing termδA = (∂ · A) with δ = ±∗d∗ is the dual of the
2-formF = dA which is the electric fieldE here in two dimensions.
‖ Note that we have taken the upper sign of these transformations in equation (3.7). However, the above statements
are valid for the lower sign as well.
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symmetriesδ(d,D) lead to the derivation of the following conserved and nilpotent (Q2
(d,D) = 0)

dual-BRST charge due to Noether theorem:

Q(d,D) =
∫

dx
[
E ˙̄C − ĖC̄] ≡ ∫ dx

[
B ˙̄C − ḂC̄] (3.8)

which generates (3.4) and (3.6) (i.e.δrφ = −iη[φ,Qr ]±, r = d,D and (+)− stands for
a (anti)commutator corresponding to (fermionic) bosonicφ). Due to the discrete symmetry
invariance of the ghost action underC → iC̄, C̄ → iC, we have the existence of a conserved
and nilpotent antidual-BRST chargeQ(Ad,AD) which can be derived from (3.8) by these
substitutions (i.e.C → iC̄).

It is obvious thatQB andQD are the fermionic symmetry generators (Q2
B = 0,Q2

D = 0)
for the Lagrangian density (3.5). Thus, the anticommutator of the two ({QB,QD}) will also
be a symmetry generator. The corresponding bosonic transformationδW = {δB, δD} with the
infinitesimal bosonic transformation parameterκ (= −iηη′)

δWAµ = κ(∂µB + εµν∂
νB) δWB = 0 δWB = 0

δWC = 0 δW C̄ = 0 δW (∂ · A) = κ�B δWE = −κ�B
(3.9)

is the symmetry of the above Lagrangian density (3.5) becauseδWLB = κ(∂µ[B∂µB−B∂µB]).
Hereη andη′ are the infinitesimal fermionic transformation parameters corresponding toδB
andδD, respectively. The generator of the above symmetry transformation (and the analogue
of the Laplacian operator) is a conserved charge (W ) given by

W =
∫

dx
[
BḂ − BḂ]. (3.10)

This conserved quantity can be calculated directly from the anticommutator{QB,QD} if we
exploit the canonical (anti)commutators:{C(x, t), ˙̄C(y, t)} = δ(x − y), {C̄(x, t), Ċ(y, t)} =
−δ(x−y), [A0(x, t), B(y, t)] = iδ(x−y), [A1(x, t),B(y, t)] = iδ(x−y) and the rest of the
(anti)commutators are zero. Hereδ(x − y) is the Dirac delta function.

4. Extended BRST algebra

The set of all the conserved charges are the (anti)BRST, (anti)dual BRST, ghost and theW

operator. Together, these charges for the 2D freeU(1) gauge theory are

QB =
∫

dx
[
BĊ − ḂC] QAB = i

∫
dx
[
B ˙̄C − ḂC̄]

QD =
∫

dx
[
B ˙̄C − ḂC̄] QAD = i

∫
dx
[
BĊ − ḂC]

W =
∫

dx
[
BḂ − BḂ] Qg = −i

∫
dx
[
C ˙̄C + C̄Ċ

]
.

(4.1)

If we exploit the covariant canonical (anti)commutators, these conserved charges obey the
following extended BRST algebra:

[W,Qk] = 0 k = B,D,AB,AD, g
Q2
B = Q2

AB = Q2
D = Q2

AD = 0

{QB,QD} = {QAB,QAD} = W
i[Qg,QB ] = +QB i[Qg,QAB ] = −QAB

i[Qg,QD] = −QD i[Qg,QAD] = +QAD

(4.2)
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and all the rest of the (anti)commutators turn out to be zero. A few remarks are in order.
First of all, we see that the operatorW is the Casimir operator for the whole algebra and its
ghost number is zero. The ghost number ofQB andQAD is +1 and that ofQD andQAB

is −1. Now given a state|ψ〉 in the quantum Hilbert space with the ghost numbern (i.e.
iQg|ψ〉 = n|ψ〉), it is straightforward, due to the above commutation relations, to check that
the following relations are satisfied:

iQgQB |ψ〉 = (n + 1)QB |ψ〉
iQgQD|ψ〉 = (n− 1)QD|ψ〉
iQgW |ψ〉 = nW |ψ〉

(4.3)

which demonstrate that, whereasW keeps the ghost number of a state intact and unaltered,
the operatorQB increases the ghost number by one andQD reduces this number by one. This
property is similar to the operation of a Laplacian, an exterior derivative and a dual exterior
derivative on ann-form defined on a compact manifold. Thus, we see that the degree of the
differential form is analogous to the ghost number in the Hilbert space, the differential form
itself is analogous to the quantum state in the Hilbert space, a compact manifold has an analogy
with the quantum Hilbert space andd, δ and1 = dδ+δd areQB ,QD andW , respectively. It is
a notable point thatd andδ can also be identified withQAB andQAD in the BRST formalism.

5. Hodge decomposition theorem and topological invariants

It is obvious from the algebra (4.2) and the consideration of the ghost number of states
(QB |ψ〉,QD|ψ〉 andW |ψ〉) in (4.3) that one can now implement the Hodge decomposition
theorem in the language of BRST and dual-BRST charges (see, e.g., [3, 7, 8])

|ψ〉n = |ω〉n +QB |θ〉n−1 +QD|χ〉n+1 (5.1)

by which, any state|ψ〉n in the quantum Hilbert space with ghost numbern can be decomposed
into a harmonic state|ω〉n, a BRST exact stateQB |θ〉n−1 and a dual-BRST exact stateQD|χ〉n+1.
To refine the BRST cohomology, however, we have to choose a representative state as the
physical state from the total states of the quantum Hilbert space. Let us pick out here the
physical state as the harmonic state (|phys〉 = |ω〉) from the Hodge decomposed state (5.1).
The number of such harmonic states is finite for a given physical theory as it represents the
number of solutions to the Laplace equation (see, e.g., [2]). By definition, such a state would
satisfy the following conditions:

W |phys〉 = 0 QB |phys〉 = 0 QD|phys〉 = 0. (5.2)

Due to the simple form of the equations of motion (�Aµ = 0,�C = 0,�C̄ = 0) for the basic
fields in the theory, it is very convenient to express them in the normal modes [21]

Aµ(x, t) =
∫

dk

(2π)1/2(2k0)1/2

[
aµ(k)e

−ik·x + a†
µ(k)e

ik·x]
C(x, t) =

∫
dk

(2π)1/2(2k0)1/2

[
c(k)e−ik·x + c†(k)eik·x]

C̄(x, t) =
∫

dk

(2π)1/2(2k0)1/2

[
b(k)e−ik·x + b†(k)eik·x]

(5.3)
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wherekµ are the 2D momenta with the components(k0, k1 = k). The on-shell nilpotent
symmetry transformations (2.2) and (3.4), that are generated by the chargesQb andQd , can
now be exploited to yield (see, e.g., [21, 22] for details)

[Qb, a
†
µ(k)] = −kµc†(k) [Qd, a

†
µ(k)] = εµνkνb†(k)

[Qb, aµ(k)] = kµc(k) [Qd, aµ(k)] = −εµνkνb(k)
{Qb, c

†(k)} = 0 {Qd, c
†(k)} = iεµνkµa†

ν

{Qb, c(k)} = 0 {Qd, c(k)} = −iεµνkµaν

{Qb, b
†(k)} = −ikµa†

µ {Qd, b
†(k)} = 0

{Qb, b(k)} = +ikµaµ {Qd, b(k)} = 0.

(5.4)

Similarly, the Casimir operatorW generates the following commutation relations:

[W, a†
µ(k)] = ik2εµν(a

ν)† [W, aµ(k)] = −ik2εµνa
ν

[W, c(k)] = [W, c†(k)] = [W, b(k)] = [W, b†(k)] = 0.
(5.5)

We are now in a position to define the physical vacuum|vac〉 as

Qb|vac〉 = Qd |vac〉 = W |vac〉 = 0

aµ|vac〉 = c(k)|vac〉 = b(k)|vac〉 = 0.
(5.6)

A single photon state|e(k), vac〉 with polarization vectoreµ can be created from the physical
vacuum by the application of a creation operator eµa†

µ|vac〉 ≡ |e(k), vac〉. The physicality
criteriaQb|e(k), vac〉 = −(k · e)c†(k)|vac〉 = 0, Qd |e(k), vac〉 = εµνe

µkνb†(k)|vac〉 = 0
lead to the transversality(k · e = 0) of the photon and the conditionεµνeµkν = 0 between
eµ andkµ. Together, these conditions (due to the presence of extended symmetries) remove
both the physical degrees of freedom of the 2D photon and imply the masslessness condition
k2 = 0 (see, e.g., [22] for more discussions).

The operation of theW operator on a single photon state (i.e.W |e(k), vac〉 =
−ik2εµνe

µ(aν)†|vac〉 = 0) implies the on-shell condition (�Aµ = 0→ k2 = 0) as well as the
masslessness condition (k2 = 0) for the photon. The other relations,k · e = 0, εµνeµkν = 0,
emerging from the operation ofQb andQd on a single photon state, areuniquesolutions to
k2 = 0. Thus, in a subtle way,W |phys〉 = 0 does imply the validity ofQb|phys〉 = 0 and
Qd |phys〉 = 0. If basic symmetries are the central guiding principle, the operation of theW

operator on a single physical photon state in 2D is superfluous (in some sense) because the
symmetry corresponding toW can be derived from the symmetries generated byQ(b,B) and
Q(d,D). This fact is encoded in the expression for the operatorW (cf equation (4.1)) which
can be re-expressed as

W =
∫

dx
d

dx

[
1
2B

2 − 1
2B

2
]→ 0 as x →±∞ (5.7)

due to the equation of motion∂µB + εµν∂νB = 0. One cannot think of the off-shell validity of
the expression forW in (4.1) because of the considerations of BRST cohomology. The presence
of the two nilpotent symmetries corresponding toQ(b,B) andQ(d,D) and the requirement that:
Q(b,B)|phys〉 = 0,Q(d,D)|phys〉 = 0, forces the physical 2D photon to always satisfy the on-
shell (�Aµ = 0) as well as the mass-shell (k2 = 0) condition. Thus, there is no escape from
the conditionW → 0 for a topological field theory where all the physical degrees of freedom
are gauged away by symmetries alone. The topological nature of the theory is reflected by the
presence of the topological invariants on the 2D manifold. The two sets of these invariants, with
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respect to both the conserved (Q̇B = 0, Q̇D = 0) and off-shell nilpotent (Q2
B = 0,Q2

D = 0)
chargesQB andQD, are

Ik[Ck] =
∮
Ck

Vk Jk[Ck] =
∮
Ck

Wk (k = 0, 1, 2) (5.8)

whereCk are thek-dimensional homology cycles in the 2D manifold and k-formVk andWk

for the 2D freeU(1) gauge theory are juxtaposed as

V0 = BC W0 = BC̄
V1 =

[
BAµ + iC ∂µC̄

]
dxµ W1 =

[
C̄εµρ∂

ρC − iBAµ
]

dxµ

V2 = i
[
Aµ∂νC̄ − 1

2C̄Fµν
]

dxµ ∧ dxν W2 = i
[
εµρ∂

ρCAν + 1
2Cεµν(∂ · A)

]
dxµ ∧ dxν.

(5.9)

It can be seen thatV0 andW0 are BRST (δBV0 = 0) and co-BRST invariant (δDW0 = 0)
andV2 andW2 are closed (dV2 = 0) and co-closed (δW2 = 0), respectively. Using the
canonical (anti)commutation relations with iQg, it can be checked that the ghost numbers for
(V0, V1, V2) are (+1, 0,−1) and that of(W0,W1,W2) are(−1, 0,+1), respectively. This fact
can be succinctly expressed (fork = 0, 1, 2) as

i[Qg, Vk] = (−1)1−k(k − 1)Vk

i[Qg,Wk] = (−1)1−k(1− k)Wk.
(5.10)

These invariants (fork = 1, 2) obey the following relations (see, e.g., [18, 23, 24]):

δBVk = ηdVk−1 d = dxµ ∂µ

δDWk = ηδWk−1 δ = i dxµ εµν∂
ν

(5.11)

whered andδ are the exterior and dual-exterior derivatives on the 2D compact manifold. Both
these sets of topological invariants are related to each other by the duality transformations (3.7)
asIk → Jk under the substitutions:B →−iB, C → iC̄, ∂µ→ iεµν∂ν .

Using the on-shell nilpotent BRST and dual-BRST transformations (2.2) and (3.4), it will
be interesting to verify that, modulo some total derivatives, the Lagrangian density (3.2) can
be written as the sum of BRST and co-BRST invariant parts:

ηLb = 1
2δd
[
iEC

]− 1
2δb
[
i(∂ · A)C̄]. (5.12)

The invariance of this Lagrangian density under BRST and dual-BRST transformations is easy
to see becauseδ2

b = 0, δ2
d = 0 and{δd, δb} → 0 as the Laplacian operator goes to zero (W → 0)

for the validity of the equations of motion. Furthermore, the expressions in the square brackets
in (5.12) are BRST invariant (i.e.δb[iEC] = 0) and co-BRST invariant (i.e.δd [i (∂ ·A)C̄] = 0).
Using the fact thatQr(r = b, d) is the generator of transformationδrφ = −iη[φ,Qr ]±,
where(+)− stands for the (anti)commutator corresponding toφ being (fermionic) bosonic
in nature, it can be seen that (5.12) can be written asLb = {Qd, S1} + {Qb, S2} for
S1 = 1

2EC, S2 = − 1
2(∂ · A)C̄. This shows that the freeU(1) topological gauge field theory

is similarin form to the Witten-type theories [24] but completely different in outlook from the
Schwarz-type theories [25]. To be very precise, the freeU(1) topological gauge field theory is
somewhat different from [24] too. This is mainly because of the fact that, in our discussions,
there are two conserved and nilpotent charges with respect to which the topological invariants
are defined, whereas in [24] there exists only a single BRST charge which is obtained due to the
presence of topological shift and local gauge symmetries. In our discussions, there is no shift
symmetry at all. Thus, fromsymmetry point of view, the 2D freeU(1) gauge theory is more
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like Schwarz-type theories. It can be seen, however, that thesymmetricenergy–momentum
tensor (Tµν) for the Lagrangian density (3.2) (or (5.12))

Tµν = − 1
2

[
εµρE + ηµρ(∂ · A)

]
∂νA

ρ − 1
2

[
ενρE + ηνρ(∂ · A)

]
∂µA

ρ

−i∂µC̄ ∂νC − i∂νC̄ ∂µC − ηµνLb (5.13)

has thesame formas the Witten- and Schwarz-type topological field theories because it can
be re-expressed as

Tµν = {Qb, V
(1)
µν } + {Qd, V

(2)
µν } (5.14)

where the exact expression forV , in terms of the local fields, are

V (1)µν = 1
2

[
∂µC̄Aν + ∂νC̄Aµ + ηµν(∂ · A)C̄

]
V (2)µν = 1

2

[
∂µCενρA

ρ + ∂νCεµρA
ρ − ηµνEC

]
.

(5.15)

It can be checked that the partition functions as well as the expectation values of the BRST
invariants, co-BRST invariants and the topological invariants are metric independent†. The
key point to show this fact in the framework of BRST cohomology is the requirement that
Qb|phys〉 = 0 andQd |phys〉 = 0 (see, e.g., [18] for details) and the metric independence of
the path-integral measure (see, e.g., [23]).

6. Conclusions

It is obvious that the usual nilpotent BRST transformations correspond to a symmetry in which
the 2-formF = dA (e.g., electric fieldE in 2 D) of theU(1) gauge theory remains invariant.
The nilpotent dual-BRST charge is the generator of a transformation in which the gauge-fixing
term ((∂ · A) = δA) remains invariant. The anticommutator of these two transformations
corresponds to a symmetry that is generated by the Casimir operator for the whole algebra.
Under this conserved operator, it is the ghost term that remains invariant. Basically, the
presence of BRST and dual-BRST symmetries imply the existence of two gauge symmetries:
eµ → eµ + αkµ, eµ → eµ + βεµνkν (for α andβ arbitrary constants) in the theory. In this
paper, these extended symmetries have been exploited together to gauge away the dynamical
degrees of freedom of 2D photon so that this theory becomes topological. The form of the
Lagrangian density (5.12), the appearance of symmetric energy–momentum tensor (5.14) and
the existence of BRST and co-BRST invariants in (5.9) confirm the (topological) nature of
the theory. In fact, it is a new type of topological field theory which captures together some
of the salient features of both Witten- and Schwarz-type theories. It is an interesting venture
to generalize these symmetries to 2D free (having no interaction with matter fields) [26] as
well as interacting non-Abelian gauge theories. Furthermore, it will be nice to explore the
physical impact of these kind of symmetries in the context of physical 4D interacting gauge
theories. In fact, as a first preliminary step in this direction, it has been shown in [19] that
the dual-BRST transformationδDAµ = −ηεµν∂νC̄ on the Abelian gauge field corresponds
to the chiral transformation on the Dirac fields for fermions in 2D interactingU(1) gauge
theory. Thus, the Adler–Bardeen–Jackiw (ABJ) anomalies appear in the theory for the proof
of conservation laws at the quantum level. It is, therefore, expected that the full strength of
BRST cohomology and the Hodge decomposition theorem might shed some light on the ABJ
anomalies and provide a clue to the well known result that in 2D, the ‘anomalous’ gauge theory

† Here we have taken only the flat Minkowski metric. However, our arguments are valid even if we take into account
a non-trivial metric. The metric independence of the measure has been shown in [23].



2446 R P Malik

is consistent, unitary and amenable to particle interpretation [27, 28]. The insights gained in
2D might turn out to be useful for the generalization of Hodge decomposition to physical 4D
gauge theories. These are some of the issues which are under investigation and the results will
be reported elsewhere.
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